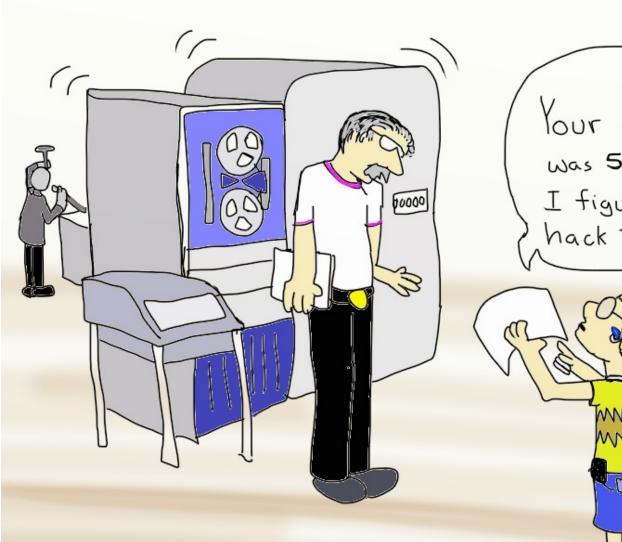


Automation of Eclipse Contact Timing Modifications Using Digital Lunar Profiles – Bill Kramer

- Eclipse Prediction requires precise knowledge of the Sun and Moon positions in the future.
 - These positions are known quite well these days.

Eclipse Chasers


- •Developed in the 1700s, the calculations make use of several approximations and simplifications.
- •The radius of a circle represents the mean lunar radius.
- •For example, the NASA predictions use a lunar radius that is reduced from the IAU accepted value to account for valleys.
- •Modern methods of eclipse prediction are accurate to a few seconds at the contact times.



 The greatest error in the calculations is now due to the lunar limb variations

Automated camera systems need a higher degree of precision.

Your prediction
was 5 seconds off,
I figured out a
hack to fix it.

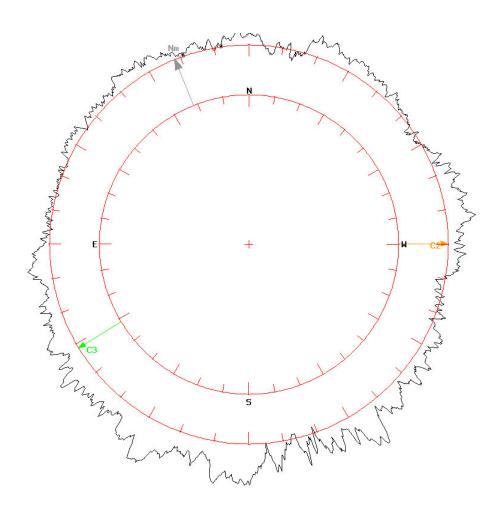
- Given a lunar limb profile one can determine corrections to the timing due to mountains and valleys.
- A procedure to determine corrections is discussed in past NASA eclipse publications.
 - We will discuss how to automate the process.

Step 1: Find Digital Lunar Profile

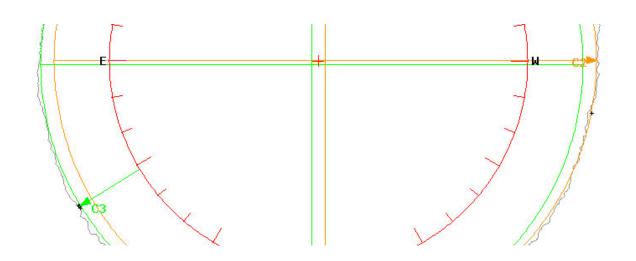
- Available online at the Centre de Données astronomiques de Strasbourg (
 - http://cdsweb.u-strasbg.fr/Cats.html)
 - The Marginal Zone of the Moon -Watts' Charts (Watts, 1963)
- Placed courtesy of Dave Herald.

Watt's Lunar Limb Profiles

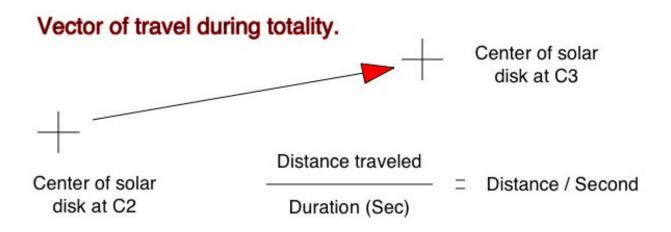
- Watt's lunar limb profiles.
 - It contains a normalized binary array of librations (latitude, longitude), position angles, and deviations.
 - There are 1800 different profiles stored in the file.
 - It is a 39 megabytes FITS file.
- Newer profiles do exist
 - Result of lunar orbiters and some heavy number crunching.


Step 2: Lunar Libration

Step 2: Lunar Libration


- Determine the lunar libration latitude and longitude for a given time and observer location.
- The latitude and longitude of libration are used to access a specific Lunar Profile.
 - Lunar profile is a list of position angles and deviations.
 - The deviation is a radial coordinate stored in seconds of arc from the mean lunar limb as seen from the center of figure.

Lunar Profile 60x


Step 3: Method

- The position angles for C2 and C3 give us the location where the solar disk is tangent to the lunar disk.
 - C2 red
 - C3 green
 - A) Given Angular size of solar disk.
 - B) Determine center points of solar disk for C2 and C3

Method

 The center points of the solar disk at the C2 and C3 locations are used to establish a vector of travel.

Method Description

- Moving the center point of the solar disk along the vector at distances corresponding to 0.1 seconds.
- Compare the points on the resultant solar disk relative to the points from the profile.
- If all points of the solar disk are inside the lunar profile,
 - Move further along vector and compute again looking for the first instance of solar disk visibility. This will increase duration time.
 - Otherwise, move along vector in the other direction looking for the last instance of solar disk visibility. This will decrease duration time.

Profile Testing Routing

```
// isTouch will return true if any point along the lunar points is greater in distance
// from the solar center point ($Xs, $Ys) than the solar radius ($Srad)

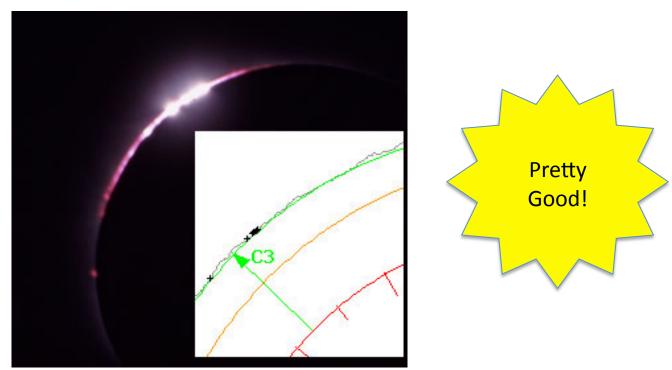
isTouch($Xs,$Ys,$Srad,$points) {
    global $testToler; //Tolerance distance for testing hit or miss.
    $hit = false;
    for ($ii=0; $ii<count($points); $ii+=2) {
        if ((distance($Xs,$Ys,$points[$ii],$points[$ii+1]) - $Srad) > $testToler) {
            $hit=true;
            $ii = count($points)+1; }
        return $hit;
}
```

Profile Testing Module

- Minimize comparisons: No Need to test entire profile, just area near contact position angle.
 - +/- 20 degrees used in programming.
 - The result is more or less optimized for central path viewing, not edges!
 - Corrections possible to accuracy of data.
 - Half distance jump over algorithm used, start with larger time jump and half each time in opposite direction until "close enough".

Method Finishes

- The resulting distance of movement of the center point corresponds directly to time.
- The difference found can then be applied to C2 or C3 to determine a new estimated contact time and location.


```
Baily's Beads Prediction Chart created by www.eclipse-chasers.com/BeadFinder Version 3 (Nov 2009)
Lunar limb profile data extracted from Watts FIT file CDS/Vizier/122 with corrections applied.
Lunar limb is distorted 10x in figure.
Offset time before C2 and after C3: 0.2 seconds
Geocentric libration: Lat. = 0 Long. = -355.4
Topocentric libration: Lat. = -0.2 Long. = 5.2
Observer lat:44.925 long:-123.064
Size of sun:1897.44 seconds
Size of moon: 1947.83 seconds
Ratio = 1.0266
Lunar North (Nm) = 21.784
                                          Nm
C2 \text{ angle} = 270.161
C3 \text{ angle} = 121.31
Total = 115.7 seconds
Ad_{ij}usted C2 = 1 seconds
Adjusted C3 = 2.1 seconds
C2 - Second Contact
C3 - Third contact
```

Issues that came up

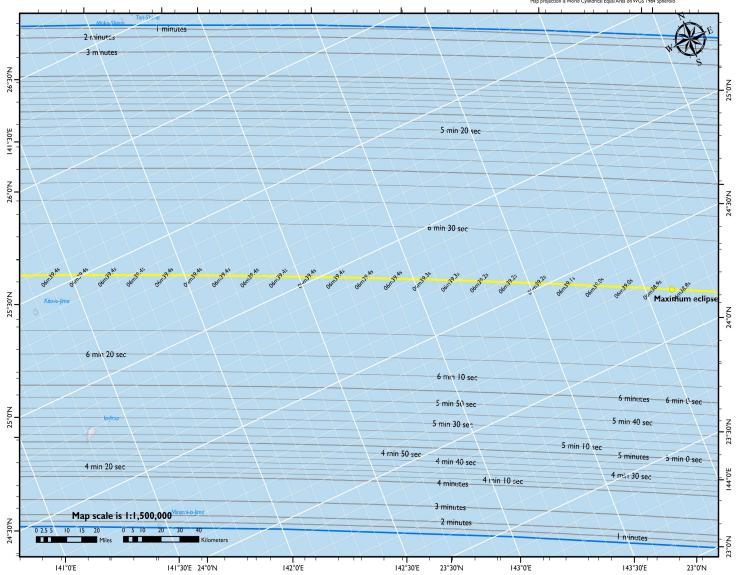
- Lunar profile charts not completely accurate
 - Published correction methods for systematic errors in original profile. (Morrison/Appleby)
- Use of different mean lunar diameters and scales (IAU standard versus min. dia.)
- Raw computational requirements as related to online response desires.
- Not always accurate for N/S edges of path. Result was often a jagged edge with irregularities.

Initial Testing

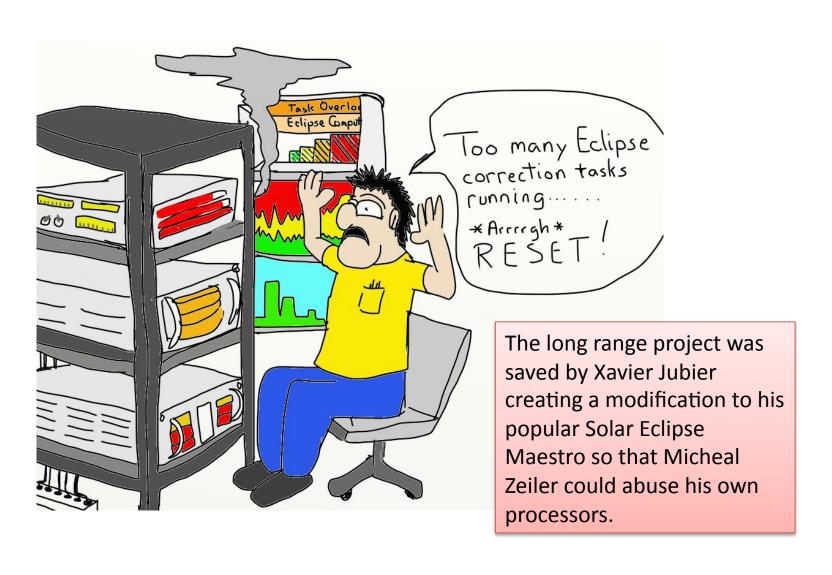
 To test this method, images of Baily's Beads were compared to expected bead locations given additional time before C2 and after C3.

Pushing the concept

- When the calculator was first written, the purpose was to refine the calculations for local circumstances.
- Another eclipse and computer enthusiast,
 Michael Zeiler, contacted me about using the calculator to create a grid of points.
 - He had a mapping application in mind.
 - His background was in GIS.


Mapping

- For mapping, a grid of durations are needed to construct a 3D like view.
 - A relatively simple change was needed to loop through the grid.
- Using powerful GIS software, millions and millions of data points from the modified version of the calculator were used to generate eclipse duration maps.
- These are the maps you've most likely seen and used at recent eclipses.


Total Solar Eclipse of July 22, 2009

Detail: Longitude 141 E to 144 E

Produced with ESN Archip progrand by Michael Zeiler (mzeiler@exri.com)
Produced with ESN Archip profivare using world shaded relief data from www.esri.com/arcgioniline
Eclipse path calculations by Fred Espansk, NASA Goddard Space Right Center (www.mreclipse.com)
Grid points for for lines of equal duration calculated by Bill Kramer (www.eclipse-chasers.com)
Map projection is World Cylindrical Equal Area on WGS 1984 Spheroid

My ISP kept restarting the servers

Digital Lunar Profiles

space.com

- A newer set of data is available to replace the Watts Lunar profile.
- Created by David Herald (IOTA) it is the result of ray tracing the 3D lunar data provided by JAPAX and the Kaguya orbiter.
 - Sometimes called the Kaguya-Herald lunar profile David was kind enough to create the file in the same format as the Watts data (FITS) for the variable libration values.

Testing further?

- Do you have a video tape that shows Baily's Beads?
 - Known location?
 - Compare the video results with the predicted results obtained using the website or SEM software options.
 - Let me know if they matched up or were off.
 - bill@eclipse-chasers.com